拨开经典的迷雾袒露大脑的秘密——学习、记忆、梦和意识(上
中国科学院水生生物研究所研究员谢平教授授权发布
我们的存在就是用一个主观的虚拟世界来感受一个客观的现实世界。一方面,我们能感知身边的大自然,看到颜色、听到声音、闻到芬芳、品尝美味、感触肌肤……另一方面,我们能感知自我,体验自身的冷热、快乐、惆怅、妒忌、痛苦或恐惧……其实,我们每个人都会体验(直接或间接地)自身或他人的喜怒哀愁。
我们又能在虚拟世界中重演现实世界。在睡梦中,我们的大脑,虽然是无意识的,呈现出一幕一幕的浮现——缥缈无定的姿影、毛骨悚然的幽灵、飘飘荡漾的欢悦......它既可以是现实,又可以超越现实。
人类的神奇被归结为我们具有的一种特殊能力——意识,它被誉为大自然最大的神奇之一,亦是人们渴望知晓的心理谜题。我们拥有意识,但并不是每时每刻,譬如,我们会在癫痫发作、使用镇静剂或睡眠时进入无意识的状态,但在梦中,我们似乎又与现实的意识若离若即,沉浸在一种无意识的漫游之中。精神分裂症病人失去了清醒时的意识,好像游荡在无拘无束的梦境之中,虽然活着,其精神却被禁锢在一个无视他人的自我世界之中。
我们很轻松地欣赏着大自然的色彩斑斓与瞬息万状,却不清楚是如何实现这种视觉过程的。美国心理学家迈尔斯(DavidG.Myers)猜测说,“当你注意某人时,视觉信息是以几百万神经冲动的形式发送到大脑,然后构造出其成分特征,最后,以某种神秘的方式,组成一个有意义的知觉图像,之后与大脑先前储存的图像进行比较并加以识别,例如,认出你的祖母。整个过程比把汽车拆卸成一块一块的零件,并把它们放在不同的位置,然后让专业工人把它重新装起来更复杂。所有这些过程的发生是迅速而毫不费力的连续过程,这确实很神奇”(Myers2004)。
从有历史记载时起,人们就开始思考和争论人的本性。身体和精神是如何联系的?我们的大部分知识是与生俱来的,还是我们生来就像‘白板’以供经验在上面书写(Myers2004)?迈尔斯说道:人脑最大的挑战是什么?就是理解人脑本身。我们的大脑如何进行自我组织和信息交流?我们的遗传如何预设大脑?我们的经验又如何修改大脑(Myers2004)?
一、我们并不了解自己的内心
英国文学家斯威夫特(JonathanSwift,1667-1745年)在《礼仪对话》中留有这样一句名言:“你并不了解你的内心”。从古至今,人类对自身认知和心理——感知、记忆、思维、梦、心灵、意识、精神等——的思索与探求从未歇息,包括了无数的思想界、哲学家、文学家、政治家、科学家……早在古希腊时代,哲学家柏拉图就认为脑是心理的场所。但我们并不真正了解自己的内心,它既神秘,又脆弱,还惰性!
我们内心的复杂与神秘绝不亚于浩瀚的宇宙。古罗马帝国的思想家奥古斯丁(SaintAureliusAugustinus,354-430年)曾在《忏悔录》中说道,“我考察的不是天空的广阔,丈量的不是星星的远近,也不是试图发现地球是如何挂在空中,我要探究的是我自己,我的记忆,我的心灵”。英国散文家刘易斯(CliveStaplesLewis,1898-1963)曾说,在整个宇宙中有且只有一种事物,我们对它的了解比从外部观察所获得的要多得多,这种事物就是我们自己,可以说,我们拥有内在的信息。
在大多数情况下,内心似乎是一种自洽的过程。正如法国数学家和思想家帕斯卡尔(BlaisePascal,1623-1662)在《沉思》中所说,“心有自己的逻辑,而这是理性所无法知晓的”。但人性有时是脆弱的,因为,并不是所有人都能有效地管控自己的内心。英国哲学家培根(FrancisBacon,1561-1626)在《新工具论》一书中说道,“所有的迷信大抵都是相同的,不管是占星术、释梦、预言,还是惩罚性的判决等等,被欺骗的人们总是看到这些事件中实现的部分,而将那些未实现的部分都忽略掉,尽管被忽略的部分更常见”。
思维安逸于现状——这是一种惰性,是人类理性的一个缺陷。英国哲学家罗素(BertrandRussell,1872-1970年)无情地讽刺道,“绝大多数人还没来得及思考就死了;而实际上,他们根本就没有思考过”。纳粹魁首希特勒(AdolfHitler,1889-1945年)嘲笑说,“民众不思考对当权者而言是一件多么幸运的事啊”。
二、关于内心的科学——认知心理学
人具有认知能力,这也是一种心理现象,亦被认为是哺乳动物的本质特征。学习、记忆、梦和意识等问题属于认知心理学的范畴。根据维基百科的定义,所谓认知心理学主要研究像注意、语言使用、记忆、知觉、问题解决、创造、思维等精神过程(Cognitivepsychologyisthestudyofmentalprocessessuchasattention,languageuse,memory,perception,problemsolving,creativity,andthinking)。亚里士多德曾问:感觉和感知是什么?这种属性为什么会在动物中出现?遗憾的是,即使是今天,我们也依然难以回答清楚这些问题。
心理在本质上是一种生物现象,这是不言而喻的,即你所有的想法、心情、冲动都可归结为生物过程,无论它是多么的复杂!难道你不是用你的身体来思考、感受和行动吗?你可以不通过自己的身体与外部世界进行联系吗?试试看,如果不通过身体,你能笑、能哭,能爱别人吗?没有身体——基因、大脑、身体中的化学过程、外貌——你谁都不是(Myers2004)。
另一方面,认知问题并不是孤立的,而是相互耦联的。有了感觉经历之后,才可能留下记忆;没有记忆,就不可能有学习。从感觉到知觉就出现了意识现象,它是大脑的一种复杂的生理和心理现象。人的生理活动大多都不是有意识的,甚至有些心理现象(如梦)都不受人的主观意识的控制。
目前对大脑认知过程的探索主要是沿着两条主要的路径——传统的心理学分析和神经生物学研究。心理学仿佛到了穷途末路的境地,而认知神经生物学研究则是一派生机盎然,人们倾情于从各种层次(如分子、细胞或整体)以及各种手段(物理、化学、分子生物学、遗传学、大数据分析等)对大脑功能模块和网络连接的深度解析,特别是脑成像、电生理、神经递质等的飞速发展仿佛让我们如鱼得水、如虎添翼。
一些科学还原论者,如美国生物学家威尔逊(EdwardO.Wilson),乐观地认为,一旦我们了解了大脑形成和运作的后天规则,我们就能应用这些规则来理解人类行为,包括标准行为,甚至伦理学和美学也能这样还原分析,他称之为协调(consilience)(Wilson1998)。
美国生物化学家、1972年的诺贝尔生理学或医学奖得主埃德尔曼(GeraldMauriceEdelman)指出,“神经科学有坚实证据表明,我们的认知能力是自然界中进化的产物。显然,这种能力不是来自逻辑或计算,而是随着感知、记忆、运动控制、情感和意识本身等各种大脑功能的出现而涌现出来的”(Edelman2006)。
但遗憾的是,关于意识,现在基本停留在心理学家的抽象定义或生物学家的过程勾画上,偶尔也会出现量子意识这样的物理学猜测。但可以肯定的是,我们离识别、量化、模仿和理解意识还差得十万八千里!
三、为什么做梦?
梦,一种沉睡心灵的幻想,既生动又情绪化,有时还具有奇异的色彩。一个晚上会有那么几次,你创作着超现实的心灵电影,这些事件经常以混乱的顺序出现,突然进行场景的切换,有人出现又会消失,而且可能经常违背类似重力这样的物理定律。然而,梦是如此生动以至于我们可能会将其与现实混淆(Myers2004)。
在整个人类史上,人们一直在寻找梦的意义,梦——灵魂的脱离,还是现实的预兆?奥地利精神病医师、心理学家弗洛伊德(SigmundFreud)指出,梦是梦者的镜子,不是神的显圣,也不是现实的预兆(卢斯和西格尔1991)。美国精神分析心理学家弗洛姆(ErichFromm)问道:“梦是低级自我的声音,抑或是高级自我的声音”(弗洛姆1991)?1900年,弗洛伊德在《释梦》中指出,梦表现了被压抑的内驱动力和梦者潜意识中的情感冲突,这些东西在睡眠时表现为可见的象征(戴明1991)。
弗洛伊德将梦比作可以理解我们内部心理冲突的钥匙。但批评者认为,弗洛伊德的理论本身实际上就是一个科学噩梦,到了该从其梦论中觉醒的时候了。美国心理学家霍伯森(JohnAllanHobson)批评道,“人们将(梦境)解释为有意义的,并且随后会兜售一解释,这是骗子行径”。早在十八世纪,英国文学家斯威夫特(JonathanSwift,1667-1745)在《论梦》中说,“那些在宁静的夜晚闯入并迷惑我们心灵,而且经过转化伪装的梦只是大脑的一种产物。只有傻瓜才会考虑那些无谓的梦”(Myers2004)。
其实人们对梦的生理学机制依然是知之甚少,基本停留于心理学的猜测。虽然有些人认为梦可能有利于大脑的信息加工,即梦可以帮助我们对进入我们记忆的白天的经历进行筛选、分类和巩固,但具体为何如此则无人知晓。
四、记忆是什么?
人们给“记忆”下了十分洋气的定义——“信息的编码、储存与提取”,但可笑的是人们既不知道记忆如何编码,也不知道如何储存,更不知道如何提取。人们发现了一些破坏记忆的蛋白,如一种称为CPEB3的朊蛋白(Pavlopoulosetal.2011,Fioritietal.2015),一种名为DNMT3A2的蛋白,还有一种叫做PKMzeta的蛋白(Shemaetal.2007,Sacktor2010),等等,但这能告诉我们记忆是如何形成或储存的吗?这与人人熟知的“睡眠不足导致记忆力减退”的说法基本是异曲同工。
当你合上双眼,可以回忆刚才、几天前甚至几十年前的往事,这就是记忆。记忆是我们在童年就开始形成的能力,它将伴你终身,幼年的,成年的,老年的……记忆可谓大自然的奇迹,但无人知道物质世界为何演变出这种不可思议的能力?
记忆渗透入生活的方方面面,譬如,你可以凭借记忆旅行到曾经去过的地方。你可以和接触的人分享记忆,美好的记忆你想珍藏,而痛苦的记忆你想遗忘。记忆丢弃生活中的大多数细节,但勾勒出生活的脉络与原则,并使人憧憬未来。记忆提供行为的决策,也形成对自我的约束......记忆既塑造人生,也定义了自我......因此,你的记忆代表了你自己,就是你自己。如果一个人的记忆能力丧失,后果将不堪设想,当然,随着人的衰老,我们曾经的大部分记忆也将会慢慢逝去,甚至会彻底丧失对自我的感知。
人们对自身的记忆充满困惑,很多问题都是未解之谜:人的大脑是如何对一个有形并具有色彩的物体进行记忆的呢?是存放在单一的脑区还是拆分成不同的特性分存放在不同的脑区?如何对时空场景中所发生的系列事件进行记忆?记忆的对象是完整的事件还是随机的单元?如果是随机的单元,它们为何以及如何得以组合成一个工作网络呢?迄今为止,我们并不知道大脑对感觉信息(视觉、听觉、嗅觉、味觉、触觉)是否进行了编码以及如果是,那是如何编码的,因此也就谈不上它们是如何被准确储存以及如何被快速提取的。我们对记忆的认识都还只停留在表象上,对本质几乎是一无所知。我们对记忆机制的解读还得依赖传统的办法,即主要根据伴随着病人或动物模型中特定区域的损伤出现的记忆缺陷来构建逻辑。
从生物学上来说,记忆就是细胞本身。人生的春天会渐渐逝去,花蕾会凋萎,叶子会干枯,生命的血液会凝固......当我们虚弱的躯体被光阴焚毁时,还剩下什么呢?什么也没有,这当然包括印刻在那些神经细胞之中的我们曾经拥有的一切记忆。当弥留之际,记忆或许填满了自我的经历——神秘与梦想……在死亡的霎那,记忆随意识的静静消失而坍塌,它们与累赘的躯体一道挣脱了光焰,返归了昏冥。
五、意识可被认识吗?
20世纪80年代之前,意识曾是自然科学的禁忌之地,随着脑科学特别是脑成像技术的发展以及临床医学证据的积累,意识之火开始在自然科学家眼前燃烧,对此,一些知名科学家如克里克(FrancisCrick)、埃德尔曼和坎德尔(EricR.Kandel)等诺贝尔奖得主的添材加油功不可没(顾凡及2012)。
意识是第一人称事物,而科学的客观方法论是第三人称立场,信念、主观性之类的东西不被科学实验所承认。科学是辅以可验证真理的想象,而想象实际上是依赖于意识的,因此,科学本身也必须依赖于意识,然而我们的意识却长期被排除在科学之外(Edelman2006)。
笛卡尔早就将思维从自然中完全除去了,认为只存在两种物质:1)广延之物——可被物理学研究的事物,和2)思维之物——既没有实体也不能被物理学研究的思想之物。正是受到这种二元论观念的影响,意识长期无法成为科学研究的合法对象。
奥地利物理学家、1933年的诺贝尔物理学奖得主薛定谔(ErwinSchrdinger)曾说,物理学的所有理论都不包括感官知觉,因此要发展就必须认定这些现象超出了科学所能理解的范围(Schrdinger1958)。澳大利亚神经生物学家、1962年的诺贝尔生理学或医学奖得主埃克尔斯(JohnEccles)宣称,“我的使命是专注于我们经验世界里最卓越的事件,即我们每个人是怎样成为有自我意识的、独一无二的存在的。这是超越科学之所及的一个奇迹”(Eccles1989)。
美国哲学家塞尔(JohnSearle)认为,意识在本体上是主观的,而科学研究的对象在本体上是客观的,因此将意识作为科学研究的对象是不可能的。他批评道,“科学还原论宣称,唯物主义最终能以神经活动模式来解释精神世界里所发生的一切。我坚持认为,科学还原论(简化发)极度贬低了人类的奥妙。这种信念肯定会被归类为迷信那一类”(Searle1997)。
我们知道很多物理定律,但却不知道它是如何构建出大脑这样一个物理系统中的意识的。我们知道自己的身体由大约1029个夸克和电子组成,它们的运动都得遵守基本的物理定律。因此,意识发生在特定的物理系统中,但为何有些物质实体有,而另一些又没有呢?
EdelmanandTononi(2000)认为,意识是由一般物质的组合中浮现。意识肯定是生命系统复杂到一定程度之后涌现出来的客观属性,然而,意识的生物学机制依然是个未解之谜。譬如,我们并不清楚在神经系统中运行的意识需不需要重新编码,如果需要,是如何被编码的呢?此外,我们也不知晓意识是否像一台计算机那样进行运算,如果是,那它是如何根据输入进行运算并产生输出的呢?可否进行这样的物理学比喻,即大脑像一个线圈,外部世界的信息如同磁场,意识恰似所产生的感应电流?还有,我们也不知道意识是否是生命复杂化造就的一个副产物?为何神经细胞能从相互作用中涌现出意识?其实,我们亦不知道如何去实证这些问题的真伪。
六、脑科学的二个伟大发现——二个“死胡同”?
1924年,德国医生汉斯贝格尔(HansBerger,1873-1941)从一个颅骨受损的病人头部检测出极为微弱的电流,后来他确认了这种电流来自于脑部活动,并发明了脑电图
(Electroencephalogram,EEG)。现在认为,大脑在活动时,大量神经元同步发生突触后电位,经总和后形成谓脑电波,它是脑神经细胞的电生理活动在大脑皮层的总体反映。脑电波来源于锥体细胞顶端树突的突触后电位,根据频率高低区分为4种主要类型:α波(8-13HZ)、β波(14HZ以上)、θ波(4-8HZ)和δ波(0.5-3HZ)。其实,直到今天,人们都还不清楚这些波意味着什么(Crick1994)。
HansBerger(1873-1941)
但是,这一伟大发现引来了潮水般的跟踪研究,导致了一种将大脑的活动局限于一种电化学信号的根深蒂固的偏见。美国神经科学家所斯奈德(SolomonH.Snyder)说,“在大脑里加工的所有信息都涉及神经元在突触间隙彼此‘交谈’”,美国神经解剖学家布卢姆(FloydBloom)也说,“当我们谈到大脑时,如果你想了解大脑的活动,跟随神经递质即可”。Myers(2004)宣称,“神经元是神经系统的基本成分,是我们身体的一种快速的电化学信息系统”。可是,神经冲动的传递比计算机的内部信息慢一百万倍,虽然我们已经设计出装有识别面孔软件的安全相机,但是我们的大脑即刻识别一个熟悉面孔的能力却超过任何一台计算机(Myers2004)。我的问题是,如果视觉需要通过编码转变为电信号,那我们瞬间的视觉辨识何以可能?
这种偏见淋漓至尽地体现在我们所发明的研究大脑的许多所谓的“先进”技术上,几乎都聚焦于神经元的电化学(或能量)过程,借助它们生产了无数“宝贵”的数据。像很多其他领域的科学家一样,不少神经科学家对获取这样的数据可谓欲壑难填,图谋着从这种海量信息中找出一些规律性,但我们却依然是雾里看花。脑电图(electroencephalogram,EEG)被用来检测大脑表面由几十亿神经元的电活动产生的电波,这被誉为就像通过听马达的轰鸣声来研究汽车引擎的活动一样(Myers2004)。类似的技术还有通过X射线的CT扫描(computedtomographyscan)、通过各个脑区的化学燃料——葡萄糖的消耗来描述脑活动的PET扫描(positronemissiontomographyscan)、利用结合在神经细胞脂膜上的染料将膜电位转化为荧光或光吸收信号,并用光学成像方法对神经电活动进行多点测量的电压敏感染料成像(voltagesensitivedyeimaging,VSDI)技术、采用静磁场和射频磁场获得高对比度的大脑清晰图像成像(既不用电子离辐射、也不用造影剂就可)的核磁共振成像(magneticresonanceimaging,MRI)以及在MRI基础上发展出的弥散张量成像(diffusiontensorimaging),等等。还有一些衍生的多通道技术,如多道EEG、胞外多通微电极记录、微电极阵列,等等。
这些所谓的新技术创造出了海量的电生理数据,对此一些人信誓旦旦地宣称我们拥有大数据运算能力,但问题是,有谁知道什么是我们试图检验的关键性科学假说吗?还有,请不要忘记,神经细胞有数百亿之多!虽然不能否认这些新技术带来了些许进步,但还远未达到揭秘大脑工作原理的地步。笔者认为,这些所谓的脑成像新工具绝不可能像Myers(2004)宣称的那样如显微镜之于生物学、望远镜至于天文学。试问,何以能从马达的响声中窥视出汽车引擎的工作原理?这似乎是天方夜谭!
海量的数据并不一定意味科学探索就能尘埃落定。譬如,人们曾经予以厚望的人类基因组计划早已曲终人散,但人们并未能实现当初的期许,面对癌症、衰老这样的医学难题,我们依然还是一筹莫展。收集数据是一回事,揭示匿藏其中的逻各斯(Logos)——事物运行的法则又是另一回事。从浩如烟海的脑电数据中寻求顿悟可能是不切实际的期待,无奈的困局或许还会延续下去。
2016年1月17日,结构生物学家施一公院士在“未来论坛”年会上发表的题为《生命科学认知的极限》的演讲中感叹道,“对大脑这样一个神秘的器官我们也知之甚少,我们基本上可以说什么都不知道。尽管我们有很好的学习记忆模型,我们可以模拟出学习记忆的过程,但究竟是不是这样?我们真的不知道。我甚至认为包括我们的电信号记录的神经冲动电位,只是一个表象,不一定是学习记忆的本质”。
2.视觉功能柱的发现
在所有的感觉信息中,视觉机制可能是最复杂的了(图1)。我们每个人都能轻而易举地欣赏大自然的美景——青翠的草木、飞舞的蝴蝶、苍茫的白雪……但我们并不知晓大脑是如何浮现曾经目睹过的外部世界的各种图像的。
在美国哈佛大学的两位神经生物学家——美裔加拿大人休伯尔(DavidHunterHubel)与瑞典人维泽尔(TorstenNilsWiesel)自1958年开始对视觉机制进行了长达25年的合作研究,共同获得了1981年诺贝尔生理或医学奖。他们首次用微电极研究外侧膝状体和视皮层神经细胞感受野,并提出视觉信息是通过三条独立的通道进行加工的。
DavidHunterHubel(1926-2013)
他们将动物(猫)麻醉,将头固定于立体定向头架中,将一个细金属电极插入到视皮层(visualcortex)中,并尽量靠近(不损伤细胞膜)单个神经细胞或纤维以检测由神经冲动产生的电流。同时使猫的眼睛保持张开并阻止眼球转动。将猫面向几米外的屏幕,使用幻灯机在屏幕上投射与背景不同几何性质的图形(如线条等)(图1)。通过利用这样的装置来研究动物神经细胞对不同类型光刺激的反应(电信号)。
图1HubelWiesel的实验示意图(引自Purvesetal.2004)
他们在反复多次的实验中发现认,视皮层中的神经细胞对光点或大面积弥散光刺激并无反应,但却在一次偶然中惊喜地观察到,这些细胞对一定朝向(或方位)的亮暗对比边、光棒或暗棒反应强烈(产生密集的电信号),但若偏离该细胞“偏爱”的最优方位,细胞反应停止或骤减。他们发现,绝大多数视皮层细胞都具有强烈的方位选择性,各个细胞的感受野位置连续地发生漂移(图2),即最优方位大致以10度/50μm的变化率按顺时针或逆时针方向发生连续变化,有时在旋转90~270度以后,旋转方向发生逆转。
图21958年发现功能柱的实验,垂直和倾斜穿刺连续纪录得到的细胞最优方位分布,短线的长度代表该细胞反应的强弱,短线的朝向代表每一纪录到细胞的最优方位(引自HubelandWiesel1962)
他们注意到,视觉信息在经由视网膜感受野→外膝体感受野→视皮层的传递过程中,视神经细胞的感受野(receptivefield)发生了质的变化。其实,感受野并不神秘,譬如,视觉感受野就是指影响视觉神经元的刺激区。他们发现视网膜上神经节细胞的感受野与外膝状体神经元上的感受野是一一对应的,两种神经元对光点照射均呈现中心与周边相互拮抗式的响应模式(同心圆状的感受野),但是,视皮层神经元的感受野对应视网膜上的一个更大的区域,因为它是由若干个外膝体细胞的感受野共同会聚到一个视皮层细胞的感受野上的(图3)。他们宣称,简单细胞的感受野再汇聚成复杂细胞的感受野,后者再进一步汇聚成超复杂细胞的感受野。但笔者认为,感受野充其量只是一种电生理响应(发放),只能反映神经活动的一个有限的侧面。
图3简单细胞感受野与外侧膝状体神经元和神经节细胞感受野的关系(引自HubelandWiesel1962)
之后,感受野的研究开始疯狂,因为HubelandWiesel(1962)的这篇文章(发表在TheJournalofPhysiology)的google引用已超过12000次!人们对类似实验重复的热情使我感到震惊。尤其令我惊讶的是,迄今为止,无人能够回答为何感受野会发生这样的变化!在生命科学领域中,类似的不可思议的事情司空见惯,譬如,人们对遗传密码子、光合作用和生化循环等的工作原理描绘得栩栩如生,但却一点都不知道它们是怎么来的。
20多年之后,休伯尔与其学生在Science上的一篇综述论文(LivingstoneandHubel1988)中指出,我们的大脑会把一个视觉场景划分为各个子维度,例如颜色、深度、运动和形状,然后对各个维度同时加工(图4)。Hubel(1988)深信在视觉过程中,信息是先被分解后被整合起来了的,这被称之为视觉信息的加工。但他又无奈地感叹道,像形状、颜色与运动等特征由不同的脑部位所负责,这就产生了一个问题,即不同的信息是如何组合在一起而形成例如跳跃的红球这样的知觉的呢?除了负责捕捉球的运动神经之外,它们显然地要在脑中某个地方进行组合,但关于在哪里组合以及如何组合,我们则一无所知。
图4猴子的V1视区和V2视区内加工形状、颜色、运动和深度知觉信息的分离处理通路(LGN:外侧膝状体,MT:颞中区)(引自LivingstoneandHubel1988)
自休伯尔和维泽尔于1958年开始进行的开拓性的研究之后,已经过去了半个多世纪。最近,在NatureReviewsNeuroscience的1篇综述论文之中,NassiandCallaway(2009)指出,“并行处理是视觉系统的一个独有的特征,十几种类型的神经节细胞将射入的视觉信号解析与导入到在功能和解剖上特化的通道中,再平行地投射到LGN,再到V1。覆盖在视网膜上的这些神经节细胞提供一个可以传递到大脑的整个特征性视野的完整表征。一旦到了V1,这些平行的输入通道被整合成模块,这些模块具有空间定义以及局域连接,因此,形成一些新的平行信息通道,传送到大脑的其它区域。从V1和V2的输出进入了纹外皮层中的两个相互分离但相互关联的加工路径——外背侧通路和腹侧通路。这两个通路使用了一套相似的视觉属性,但进行了不同的计算,以介导非重叠的行为目的。但在每个通道中,每个纹外皮层区域可能使用了在V1中使用的同样的策略去重组与整合多端输入(multipleinputs),形成输送到下游的新的输出”。然而,依笔者之见,对视觉机制,并未见到革命性进展,虽然人们添加了若干新的视觉通道(图5),并还在继续挖掘中,但对视觉信息在这些通道中的具体传输机制依然是一无所知。
图5视觉信息从丘脑内侧膝状体(LGN)到颞中区(MT)的多端传输,其中,粗:粗条纹区,细:细条纹区,浅:浅条纹区(引自NassiandCallaway2009)
沿着HubelandWiesel指引的方向,有人将视觉场景的加工进一步细分为三个层次——低水平加工是简单特征(如方位、颜色、对比度、视差、运动方向等)的分析,中等水平的加工用低水平特征解析视觉场景,包括轮廓整合、表面特征、形状区分、对象运动等,高水平加工就是运用表面和轮廓来辨识对象(Kandeletal.2013)。
迈尔斯说,“要在头脑中表征这个世界,我们必须识别环境中的物理能量,并且将其编码为神经信号,这个过程通常被称为感觉(sensation)。同时我们必须选择、组织并且解释我们的感觉,而这个过程通常被称为知觉(perception)”(Myers2004)。但笔者认为,即便在感觉过程中存在神经元产生电活动现象,也难以认定像视觉这样的感觉信息都被编码成了电信号。
3.视觉信息真的需要重新编码吗?
很多人相信视觉信息需要编码,提出的各种假说令人眼花缭乱:发放频率编码(?ringratecoding)假说(Barlow1972)、同步振荡(synchronizationoscillation)假说(GrayandSinger1989)、时间编码(temporalcoding)假说(Hop?eld1995)、神经细胞集群(cellassembly)假说(Hebb1949)、基本图形(iconalphabet)假设((Tanakaetal.1991)、稀疏和粗编码(sparseandcoarsecoding)假说((RollsandTreves1990),等等。
在NatureReviewsNeuroscience的1篇论文之中,Harris(2005)指出,近年围绕神经编码(neuralcode)的争论集中在脉冲发放频率编码(ratecoding)和时间编码(temporalcoding)。主张频率编码的人认为,神经元用于传递信息的唯一变量就是瞬时发放率(instantaneousfiringrate),一般用一定“编码时间窗口”中的脉冲发放率(spikerate)来表征。简单地说,脉冲频率是神经信息的携带者。而主张时间编码的人认为,脉冲发放系列的精确时序在信息传输过程中也起到了部分作用。从理论上来说,时间编码似乎更具有优势,因为所有发放序列的组合比瞬时脉冲发放频率的组合要大得多,因此,能传递更大量的可能信号。但是时间编码是怎样被下游神经元“读取”的却并不清楚。
首先,HubelandWiesel(1962)结果的真实性毋庸置疑。但依笔者之见,不能排除它被错误地解读为视觉信息需要重新编码的可能性,因为在视路中神经细胞感受野的变化并不一定就意味着视觉信息进行了编码。这是否恰恰反过来说明,视觉信息并不是像人们想象的那样都转变成了电信号了呢?因为,如果我们只是为了传输电信号,我们的大脑视觉皮层为何要演化出那么复杂的特征分离的功能超柱呢?还有,难道我们每个人瞬间就能够认出的图形还需要被编码吗?事实上,人们也未发现视觉信息被编码的任何可靠证据。笔者强烈怀疑大脑对视觉信息的处理需要编码与解码,理由赘述如下:
1)如何解释视觉信息的复杂性?视网膜的神经细胞将成像转化为电信号(称之为编码)经视交叉、视束传到视皮层已经成为一个教条。并非说脑电波毫无用处,其背后的电化学涌动在神经系统行为指令的传递中重要作用(轴突外面的脂质髓鞘可能确保了精准的电化学传递)毋庸置疑。但由光驱动的视觉机制是极为复杂的,由亮度、颜色、深度、纹理、形状、轮廓、运动等诸多特性所刻画。如果认为视觉信息都转换成了电信号,我们必须解释大脑是如何通过电信号对复杂的视觉信息进行加工、传输和存储记忆的。
2)如何解释视觉感知的瞬时性?光的传输速度是无与伦比的,在人类可感知的距离范围内都是瞬时的,像一个小小的大脑就更不用说了。因此,如果能直接利用光的反射对物体的外部信息进行传输最符合我们视觉感知的瞬时性。因为无论多么复杂的景物我们都能在瞬时之间可以感知,这表明在视网膜上的景物与视觉中枢之间不大可能存在像编码与解码这样繁琐而耗时的中间过程。即使是我们为了进行辨认或判断需要启动对过往记忆的搜索,也几乎是瞬时性的,也不大可能需要经过编码与解码的介导。总之,我们必须解释电信号何以能如此神速地编码与解码极为复杂的视觉信息。
3)光学印刻还是电化学印刻?整个视路(从视网膜→内侧膝状体→视皮层)上的神经元都保留着对光刺激(点、线或更复杂的图形)的电化学响应。如果无需直接对光进行反应,而在视网膜那里的视觉信息都被转换成了电信号,我们必须解释在视皮层中广泛存在的功能柱是如何响应这些电信号的。如果这些功能柱是为了感应光而存在的话,是否表明在视网膜上的光学影像直接传递到了视皮层?如果是,又是如何进行传递的呢?大脑对图像的记忆莫非就是在皮层中对景物的光学印刻、并等待着新的视觉信息之光对它们的再度搜索与辨认?无论如何,大脑对视觉信息的记忆绝不会是直接以神经脉冲的形式,无论是一种电化学印刻,还是一种光学印刻,底板都必须是生物大分子,这是揭秘视觉原理的必经之路,即使是天堑我们也必须越过!既然视锥细胞中视蛋白的改变能导致色觉缺陷,类似的化学机制为何不能出现在视路的其它地方?
几乎所有的人都相信视觉信息的传递需要重新编码的说法。一些人认为,在视网膜中的信号是逐级压缩的,然后到大脑这些信号又被重新解压缩,因为眼睛的1.2亿个感光细胞接受的光信号传递给越1千万个双极细胞,再到120万的神经节细胞,接着通过长长的轴突传递给外膝体的50万个细胞,最后到达皮层(陆绮2016a)。
让我们瞧瞧眼前的马路,我们能同时看到道路旁绿叶葱葱的树木、疾驰而过的车辆、来去匆匆的人群……我们区分颜色、亮度、形状、运动等的视觉通道都是同时开启的。难道你不能瞬间就能感知与辨认出进入我们视野的景物,而需要经过繁琐耗时的信息编码、解码和整合这种荒唐的过程?遗传系统是迄今为止我们在生物体内发现的唯一一套需要编码与解码的系统,但其运行的每一步几乎都要酶促反应的支撑,这是一系列复杂而耗时的生化过程,根本不可能满足得了视觉的瞬时性。
在我看来,当今世界的脑科学一方面受到Berger电生理的马达轰鸣声所牵引,另一方面又叠加了HubelandWiesel的令人晕眩的生理之光,为此,很多人(宛如误入歧途的羔羊)颇为忙碌却收获甚微!我推测,大脑皮质对视觉信息的印刻应该是在大分子水平的,无论是通过光还是通过电,这应该是一种化学或生物化学过程,因此,与此相关的结构生物学研究或许能带来一线新的希望。
本文源自下列新书(正在排版刊印中,预计2017年6月印出)的前言:
谢平.2017.拨开经典的迷雾,袒露大脑的秘密——学习、记忆、梦和意识.科学出版社,北京(XieP.2017.OverturningTraditionalTheories,andDisclosingBrainsMysteries-Learning,Memory,DreamsandConsciousness.SciencePress,Beijing)
【重磅】未来科技学院前沿科技趋势学习班(2017第一期)报名
每一次人类社会的重大技术变革都会导致新的科学革命,互联网与人工智能对于人类的影响已经远远超过了大工业革命。人工智能、互联网、脑科学、虚拟现实、机器人、生物基因等领域正在相互融合,形成一股强大的洪流,对人类社会的各个领域产生巨大的影响。
一日千里的科技进展,层出不穷的新概念,使企业家,投资人和社会大众面临巨大的科技发展压力,前沿科技现状和未来发展方向是什么?社会大众,企业家和投资家如何应对新科学技术带来的挑战?
在科学院大数据与知识管理重点实验室,泰智会,人工智能学家的支持下,未来科技学院邀请国内和国际著名科学家、科技企业家讲授人工智能、互联网、脑科学、虚拟现实、机器人,3D打印、生物基因等领域的基本原理和未来发展趋势。欢迎投资界、企业界,科研机构的人士参加。
未来科技学院第一期前沿科技趋势学习班将在2017年2月下旬(2月24日-26日)在北京中关村互联网金融中心1楼未来科技讲堂举办。线下集中学习三天,之后学员将通过未来科技学院的线上平台进行更多前沿科技讲座学习和答疑互动。集中学习期间,将举办未来科技交流酒会,加强学员以及专家之间的沟通交流。
未来科技学院第一期学员将受邀加入未来科技学院的“未来科技创新促进会”,共享未来科技学院的高端科学家、企业家和投资人资源,共同解决企业和投资过程中遇到的科技问题;参与前沿科技未来发展重大课题研究;参加未来科技学院组织的讲座、参观和会议;选择投资未来科技学院孵化的前沿科技创新创业项目。
点击本文左下角”阅读原文”了解详细信息
搜狐不良信息举报邮箱: